AP CHEMISTRY EXAM

QΙ

Which of the following usually exists as a monatomic anion in most of its compounds?

- (A) Fe
- (B) Ne
- (C) F
- (D) Na

Q₂

What is the name of the energy change when a gaseous atom, in the ground state, adds an electron?

- (A) ionization energy
- (B) sublimation energy
- (C) atomization energy
- (D) electron affinity

If the name of a binary compound, a compound containing only two elements, contains a multiplying prefix, such as di- or tri-, then the compound is most likely:

- (A) ionic
- (B) molecular
- (C) metallic
- (D) unstable

Bromine forms a series of acids like the series formed by chlorine. Which of the following series of bromine acids list the acids in order of increasing amount of oxygen present?

- (A) bromous acid, hypobromous acid, perbromic acid, bromic acid
- (B) bromous acid, bromic acid, hypobromous acid, perbromic acid
- (C) perbromic acid, bromic acid, bromous acid, hypobromous acid
- (D) hypobromous acid, bromous acid, bromic acid, perbromic acid

A—Based on their positions on the periodic table:

С	+4 to -4
F	-1 and 0 (element)
О	-2 to 0
Ca	+2 and 0

__ Fe(OH)₂(s) + __ H₃PO₄(aq) \rightarrow __ Fe₃(PO₄)₂(s) + __ H₂O(l)

After the above chemical equation is balanced, the lowest whole-number coefficient for water is:

- (A) 3
- (B) 1
- (C) 9
- (D) 6

A sample is tested for the presence of the Hg^{2+} ion. This ion, along with others, may be precipitated with chloride ion. If Hg^{2+} is present in the chloride precipitate, a black color will form upon treatment with aqueous ammonia. The balanced net ionic equation for the formation of this black color is:

- (A) $Hg_2Cl_2 + 2 NH_3 + 2 H_2O \rightarrow 2 Hg + 2 NH_4^+ + 2 Cl^- + 2 OH^-$
- (B) $Hg_2Cl_2 + 2 NH_3 \rightarrow Hg + HgNH_2Cl + NH_4^+ + Cl^-$
- (C) $Hg_2Cl_2 + 2 NH_4^+ \rightarrow 2 Hg + 2 NH_4Cl$
- (D) $Hg_2Cl_2 + NH_4^+ \rightarrow 2 Hg + NH_4Cl + Cl^-$

A solution is prepared for qualitative analysis. The solution contains the following ions: Co^{2+} , Pb^{2+} , and Al^{3+} . Which of the following will cause no observable reaction?

- (A) Dilute $NH_3(aq)$ is added.
- (B) Dilute $K_2CrO_4(aq)$ is added.
- (C) Dilute $HNO_3(aq)$ is added.
- (D) Dilute $K_2S(aq)$ is added.

How many milliliters of 0.100 MH_2SO_4 are required to neutralize 50.0 mL of

- 0.200 *M*KOH?
- (A) 25.0 mL
- (B) 30.0 mL
- (C) 20.0 mL
- (D) 50.0 mL

$$3 \text{ Cu(s)} + 8 \text{ HNO}_3(\text{aq}) \rightarrow 3 \text{ Cu(NO}_3)_2(\text{aq}) + 2 \text{ NO(g)} + 4 \text{ H}_2\text{O(l)}$$

Copper metal reacts with nitric acid according to the above equation. A 0.30 mole sample of copper metal and 10.0 mL of 12 M nitric acid are mixed in a flask. How many moles of NO gas will form?

- (A) 0.060 mole
- (B) 0.030 mole
- (C) 0.010 mole
- (D) 0.20 mole

$$3 \text{ Cu(s)} + 8 \text{ HNO}_3(\text{aq}) \rightarrow 3 \text{ Cu(NO}_3)_2(\text{aq}) + 2 \text{ NO(g)} + 4 \text{ H}_2\text{O(l)}$$

Copper metal reacts with nitric acid according to the above equation. A 0.30 mole sample of copper metal and 10.0 mL of 12 M nitric acid are mixed in a flask. How many moles of NO gas will form?

- (A) 0.060 mole
- (B) 0.030 mole
- (C) 0.010 mole
- (D) 0.20 mole

When the following equation is balanced, it is found that 1.00 mole of C_8H_{18} reacts with how many moles of O_2 ?

$$_C_8H_{18}(g) + _O_2(g) \rightarrow _CO_2(g) + _H_2O(g)$$

- (A) 12.5 moles
- (B) 10.0 moles
- (C) 25.0 moles
- (D) 37.5 moles

A student has three identical 2.0 L flasks (A, B, and C) all at 298 K. Each flask has an 8.0 g sample of gas sealed inside. Flask A contains methane, CH_4 ; flask B contains hydrogen, H_2 ; and flask C contains helium, He. Rank the three flasks in order of decreasing pressure.

- (A) A > B > C
- (B) B > C > A
- (C) C > A > B
- (D) All three flasks are at the same pressure.

Increasing the temperature of an ideal gas from 50°C to 75°C at constant volume will cause which of the following to increase for the gas?

- (A) the average molecular mass of the gas
- (B) the average distance between the molecules
- (C) the average speed of the molecules
- (D) the density of the gas

Each of four 5.0 L containers is filled with a different gas (He, CH_4 , O_2 , and CO_2). Each container contains 0.75 mole of gas at 273 K. If one of the containers springs a small leak, which of the following will change in that container?

- (A) moles, temperature, and pressure
- (B) moles and pressure
- (C) temperature and pressure
- (D) moles and temperature

Each of four 5.0 L containers is filled with a different gas (He, CH_4 , O_2 , and CO_2). Each container contains 0.75 mole of gas at 273 K. If one of the containers springs a small leak, which of the following will change in that container?

- (A) moles, temperature, and pressure
- (B) moles and pressure
- (C) temperature and pressure
- (D) moles and temperature

Q I 7

Which of the following is the minimum energy required to initiate a reaction?

- (A) free energy
- (B) lattice energy
- (C) kinetic energy
- (D) activation energy

Magnesium metal reacts readily with liquid bromine under standard conditions. Which of the following conclusions may be drawn from this fact?

- (A) $K_{eq} < 1$ and $\Delta G^{\circ} > 0$
- (B) $K_{eq} > 1$ and $\Delta G^{\circ} = 0$
- (C) $K_{eq} < 1$ and $\Delta G^{\circ} < 0$
- (D) $K_{eq} > 1$ and $\Delta G^{\circ} < 0$

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(I)$$

From the table below, determine the enthalpy change for the above reaction.

BOND	AVERAGE BOND ENERGY (kJ/mol)
Н–Н	436
O=O	499
Н–О	464

- (A) 0 kJ
- (B) 485 kJ
- (C) -485 kJ
- (D) 464 kJ

If you have a table of standard thermodynamic values for the substances involved in the reaction, how might the temperature at which the reaction changes from spontaneous to nonspontaneous be predicted?

- (A) It is impossible to predict the temperature.
- (B) The change will occur at 298 K (25°C).
- (C) ΔG cannot change from spontaneous to nonspontaneous.
- (D) At this point, $\Delta G = 0$, which leads to $T = \Delta H/\Delta S$.

Which of the following represents the electron arrangement for the least reactive element?

- (A) 1s 1 2s 1 ↓
- (B) 1s 1 2s 1 1
- (C) [Kr] 5s 1 4d 11 ___
- (D) $1s \stackrel{\uparrow}{\downarrow} 2s \stackrel{\uparrow}{\downarrow} 2p \stackrel{\uparrow}{\downarrow} \stackrel{\uparrow}{\downarrow} \stackrel{\uparrow}{\downarrow}$

The ground-state configuration of Fe²⁺ is which of the following?

- (A) $1s^22s^22p^63s^23p^63d^54s^1$
- (B) $1s^22s^22p^63s^23p^63d^6$
- (C) $1s^22s^22p^63s^23p^63d^64s^2$
- (D) $1s^22s^22p^63s^23p^63d^84s^2$

The following are some electron configurations reported by four students. Which of the following electron configurations is not possible?

- (A) $1s^22s^32p^3$
- (B) $1s^22s^22p^63s^23p^64s^23d^{10}4p^6$
- (C) $1s^22s^22p^63s^23p^63d^3$
- (D) $1s^22s^22p^5$

If all the electrons are present in pairs, a substance is said to be diamagnetic. If there is at least one electron by itself in an orbital, a substance is said to be paramagnetic. In which of the following groups are all atoms diamagnetic?

- (A) Be, O, and N
- (B) Mg, Se, and Xe
- (C) Kr, Be, and Zn
- (D) At, Sn, and Ba

Calcium reacts with element X to form an ionic compound. If the ground-state electron configuration of X is $1s^22s^22p^4$, what is the simplest formula for this compound?

- (A) CaX
- (B) CaX_2
- (C) Ca_4X_2
- (D) Ca_2X_2

VSEPR predicts an SbF₅ molecule will be which of the following shapes?

- (A) tetrahedral
- (B) trigonal bipyramidal
- (C) square pyramid
- (D) trigonal planar

Which of the following does not have one or more p bonds?

- (A) H_2O
- (B) HNO_3
- (C) O_2
- (D) N_2

Which of the following is nonpolar?

- (A) IF₅
- (B) IF_3
- (C) SiF_4
- (D) SeF_4

Which of the following has more than one unshared pair of valence electrons on the central atom?

- (A) BrF_5
- (B) NF_3
- (C) IF₇
- (D) CIF_3

The electron pairs point toward the corners of which geometrical shape for a molecule with sp² hybrid orbitals?

- (A) trigonal planar
- (B) octahedron
- (C) trigonal bipyramid
- (D) trigonal pyramid

Which of the following molecules or ions has the greatest number of unshared electrons around the central atom?

- (A) SO_2
- (B) NO_3^-
- (C) KrF_2
- (D) SF₄

Which of the following sets of bonds is listed in order of increasing covalent character?

- (A) Na-Cl < Al-Cl < P-Cl < Cl-Cl
- (B) Na-Cl < P-Cl < Cl-Cl < Al-Cl
- (C) P-Cl < Cl-Cl < Al-Cl < Na-Cl
- (D) Al-Cl < Na-Cl < P-Cl < Cl-Cl

$$\begin{bmatrix} : \ddot{\circ} - \ddot{\mathsf{n}} = \ddot{\circ} \end{bmatrix}^{\mathsf{T}} \qquad : \ddot{\circ} - \dot{\mathsf{n}} = \ddot{\circ} \qquad \begin{bmatrix} \ddot{\circ} = \mathsf{n} = \ddot{\circ} \end{bmatrix}^{\mathsf{T}}$$

There are three nitrogen—oxygen species known with a 1:2 nitrogen-to-oxygen ratio. The Lewis electron-dot diagrams for these three nitrogen oxygen species are shown in the above diagram. Which of the three has the largest bond angle?

- (A) NO_2^-
- (B) NO_2
- (C) NO₂⁺
- (D) All have a 180° angle.

The best description of the interactions in $KNO_3(s)$ is which of the following?

- (A) KNO₃ is composed of macromolecules held together by strong bonds.
- (B) KNO₃ is composed of atoms held together by delocalized electrons.
- (C) KNO₃ is composed of positive and negative ions held together by electrostatic attractions.
- (D) KNO₃ is composed of molecules held together by intermolecular dipole–dipole interactions.

Most molecular species vaporize as simple molecules. However, acetic acid, CH_3COOH , is an exception. In the gaseous state, acetic acid molecules exist as pairs known as dimers. What is the most probable cause of this behavior?

- (A) London dispersion forces
- (B) covalent bonding
- (C) hydrogen bonding
- (D) metallic bonding

Strontium sulfate, $SrSO_4$, will precipitate when a solution of sodium sulfate is added to a strontium nitrate solution. What will be the strontium ion, Sr^{2+} , concentration remaining after 30.0 mL of 0.10 MNa_2SO_4 solution are added to 70.0 mL of 0.20 $MSr(NO_3)_2$ solution?

- (A) 0.14 *M*
- (B) 0.15 *M*
- (C) 0.11 *M*
- (D) 0.20 M

A solution has 10 g of urea in 100 g of solution. Which of the following are needed to calculate the molarity of this solution?

- (A) the density of the solution and the molecular weight of urea
- (B) the density of urea and the molecular weight of urea
- (C) the density of the solvent and the density of the solute
- (D) the molecular weight of urea and the density of the solvent

Pick the conditions that would yield the highest concentration of $N_2(g)$ in water.

- (A) partial pressure of $N_2 = 1.0$ atm; temperature of water = 25°C
- (B) partial pressure of $N_2 = 0.50$ atm; temperature of water = 55°C
- (C) partial pressure of $N_2 = 2.0$ atm; temperature of water = 25°C
- (D) partial pressure of $N_2 = 2.0$ atm; temperature of water = 85°C

	IONIC RADIUS (PM)
ION	(CUBIC ENVIRONMENT)
Na^+	132
Cd^{2+}	124
La ³⁺	130

The energy change in the following reaction is the heat of hydration:

$$M^{n+}(g) + x H_2O(l) \rightarrow M(H_2O)_x^{n+}(aq)$$

 $\Delta H = \text{Heat of hydration}$

n general, the heat of hydration is exothermic. Assuming the value of x is the same in all cases, which of the following correctly predicts the relative order of the heats of hydration for the ions listed in the table and gives a correct explanation?

- (A) $Na^+ > Cd^{2+} > La^{3+}$ because ions of elements lower on the periodic table have lower hydration energies.
- (B) $Cd^{2+} > La^{3+} > Na^+$ because smaller radii lead to higher hydration energies.
- (C) $La^{3+} > Cd^{2+} > Na^+$ because higher charges lead to higher hydration energies.
- (D) All are about the same because their ionic radii are similar.

The reaction of bromine, Br_2 , with nitrogen oxide, NO, is $Br_2(g) + 2 NO(g) \rightarrow 2 NOBr(g)$.

For this reaction, the observed rate law is Rate = k [Br₂] [NO]². Why is the following unlikely to be in the mechanism?

$$Br_2(g) + 2 NO(g) \rightarrow 2 NOBr(g)$$

- (A) NO is an unstable molecule.
- (B) Br_2 is too stable to react.
- (C) This is a ternary step.
- (D) This could be a step in the mechanism.

Acid K, acid dissociation constant

$$H_3PO_4$$
 7.2×10^{-3}

$$H_{2}PO_{4}^{-}$$
 6.3 × 10⁻⁸

$$H_2PO_4^ 6.3 \times 10^{-8}$$

 HPO_4^{2-} 4.2×10^{-13}

Using the given information, choose the best answer for preparing a buffer with a pH of 8.

- (A) $K_2HPO_4 + KH_2PO_4$
- (B) H_3PO_4
- (C) $K_2HPO_4 + K_3PO_4$
- (D) K_3PO_4

$$2 \text{ CH}_4(g) + O_2(g) \iff 2 \text{ CO}(g) + 4 \text{ H}_2(g) \Delta H < 0$$

To increase the value of the equilibrium constant, K, which of the following changes must be made to the above equilibrium?

- (A) increase the temperature
- (B) increase the volume
- (C) decrease the temperature
- (D) add CO(g)

Ionization Constants

NH₃
$$K_b = 1.8 \times 10^{-5}$$

CH₃NH₂ $K_b = 4.4 \times 10^{-4}$
(CH₃)₂NH $K_b = 1.1 \times 10^{-3}$

How would a solution with an initial NH_4Cl ($NH_4^+ + Cl^-$) concentration of 1 M and an initial CH_3NH_3Cl ($CH_3NH_3^+ + Cl^-$) concentration of 1 M be classified?

- (A) a solution with a pH > 7, which is a buffer
- (B) a solution with a pH < 7, which is not a buffer
- (C) a solution with a pH < 7, which is a buffer
- (D) a solution with a pH > 7, which is not a buffer

For which of the following equilibriums will $K_c = K_p$?

(A)
$$H_2(g) + I_2(g) \Longrightarrow 2 HI(g)$$

(B)
$$CO(g) + Cl_2(g) \iff COCl_2(g)$$

(C)
$$PCl_5(g) \iff PCl_3(g) + Cl_2(g)$$

(D)
$$N_2(g) + 3 H_2(g) \iff 2 NH_3(g)$$

How many moles of Pt may be deposited on the cathode when 0.80 F of electricity is passed through a 1.0 M solution of Pt⁴⁺?

- (A) 1.0 mole
- (B) 0.60 mole
- (C) 0.20 mole
- (D) 0.80 mole

$$2 \text{ BrO}_3^-(aq) + 12 \text{ H}^+(aq) + 10 \text{ e}^- \rightarrow \text{Br}_2(aq) + 6 \text{ H}_2O(l)$$

Which of the following statements is correct for the above reaction?

- (A) The BrO_3^- undergoes oxidation at the anode.
- (B) Br goes from a -1 oxidation to a 0-oxidation state.
- (C) Br₂ is oxidized at the anode.
- (D) The BrO_3^- undergoes reduction at the cathode.

A chemist constructs a galvanic cell with a tin, Sn, electrode in a compartment containing a 1.0 M tin(II) perchlorate, Sn(ClO₄)₂, solution and a platinum, Pt, electrode in a compartment containing a 1.0 M copper(II) chloride, CuCl₂, solution. The salt bridge connecting the two compartments contains a 1.0 M potassium sulfate, K₂SO₄. Which of the following is the net ionic equation for the cell?

- (A) $CuCl_2(aq) + Sn(s) \rightarrow SnSO_4(aq) + Cu(s)$
- (B) $Sn^{2+}(aq) + Cu(s) \rightarrow Cu^{2+}(aq) + Sn(s)$
- (C) $Cu^{2+}(aq) + Sn(s) \rightarrow Sn^{2+}(aq) + Cu(s)$
- (D) $2 \text{ Cl}^-(aq) + 2 \text{ H}_2\text{O}(l) \rightarrow \text{H}_2(g) + 2 \text{ OH}^-(aq) + \text{Cl}_2(g)$

Which of the following will have the smallest mass defect?

- (A) ²³⁸U
- (B) 12 C
- (C) ⁵⁶Fe
- (D) ¹H

Cycloalkanes are hydrocarbons with the general formula C_nH_{2n} . If a 14 g sample of any alkene is combusted in excess oxygen, how many moles of water will form?

- (A) 14 moles
- (B) 2.0 moles
- (C) 1.0 mole
- (D) 28 moles

The organic compound shown above would be classified as:

- (A) an organic base
- (B) an ether
- (C) an alcohol
- (D) an aldehyde

Which of the following is the one reaction that all organic compounds will undergo?

- (A) neutralization
- (B) precipitation
- (C) combustion
- (D) polymerization

A chemistry student prepares a solution of an unknown solid with a molar mass of 78.3 g/mol. She prepares the solution by dissolving 2.50 g of the unknown substance in 100.0 g of water. Which of the following procedures could she use to determine whether the unknown substance is an electrolyte?

- (A) She could measure the specific heat of the solution.
- (B) She could measure the volume of the solution.
- (C) She could measure the freezing point of the solution.
- (D) She could determine the specific heat of the solution.